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Abstract. In the first part of this paper we find an algorithm, deciding
for any finite groupoid, whether it satisfies all entropic equations. In the
second part we prove that there is no algorithm, deciding the same for any
finite partial groupoid. Satisfaction of an equation in a partial groupoid
means that if both sides are defined, with respect to some interpretation,
then the values of the sides must be equal.

1. Introduction

By a medial groupoid we mean a groupoid satisfying the equation (xy)(uv)
≈ (xu)(yv). Entropic groupoids are homomorphic images of medial cancel-
lation groupoids. The class of entropic groupoids is a variety. This variety
has been introduced in [2]; the paper (some parts can be also found in [3],[4]
and [5]) contains several equivalent definitions. The variety is not finitely
based.

In [1], the following problem has been raised: Does there exist an algorithm,
deciding for any finite groupoid whether it is entropic? In the first part of this
paper we are going to present such an algorithm. On the other hand, in the
second part (the sections starting with section 5) we will show that there
is no algorithm deciding for any finite partial groupoid whether it satisfies
all the equations of entropic groupoids. By satisfaction of an equation in a
partial groupoid we mean that if both sides are defined, with respect to some
interpretation, then the values of the two sides must be equal.

The algorithm that we are going to present in the first part is based on
Theorem 2. It works as follows: Given a groupoid with N elements, check if
it satisfies all the basic entropic equations of depth up to 5N 18. If it does, the
groupoid is entropic according to the theorem; if it does not, then of course
it is not entropic. This algorithm is of no practical value: even for N = 2,
the number of equations to be considered is too big. For N = 2, however, one
can do much better: it is easy to see that a two-element groupoid is entropic

1991 Mathematics Subject Classification. 20N02, 68W05, 68Q05, 03D35, 03D10.
This material is based upon work supported by the Grant Agency of the Czech Republic,

grant No. 201/96/0312 and by the National Science Foundation under grants no. DMS
9941276 and DMS 9596043.
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if and only if it is medial, and this is easy to check. The following problem
remains open: Can the membership problem for finite entropic groupoids be
decided by an algorithm working in a reasonable time for groupoids with, say,
at most 26 elements? Is there an algorithm, working in polynomial time?

For the terminology and basic notions of equational logic, helpful for un-
derstanding the following text, the reader is referred to [7].

In order to be able to describe the equational theory of entropic groupoids,
we need to introduce the following notation. Given a term t (we mean a
term in the similarity type containing just one binary operation symbol, for
multiplication) and an occurrence o of a variable x in t, the weight of o (in
t) is the ordered pair (i, j), where i is the number of southwest turns and j
is the number of southeast turns in the downward path connecting the top
of the term’s tree with the occurrence o; the sum i + j is called the depth
of o. For example, the weight of the (single) occurrence of z in (x(yz))(xy) is
(1, 2), and the depth is 3. Now, an equation t ≈ u belongs to the equational
theory of entropic groupoids if and only if for any variable x and any ordered
pair (i, j) of nonnegative integers, the number of occurrences of x of weight
(i, j) in t is the same as the number of occurrences of x of weight (i, j) in u
(see [3]). For example, the medial law, and also the equation (x(yz))((uv)w) ≈
(x(yv))((uz)w) belong to the equational theory.

The paper [8] contains a construction of an infinite independent base for
the equations of entropic groupoids. In this paper we will need the following
consequence (which is, however, also easy to prove without relying on [8]).

By a slim term we mean a term t such that whenever uv is a subterm of t,
then either u or v is a variable. By a linear term we mean a term containing
no variable more than once. Let t, u be two slim terms such that the term tu
is linear; let x be a variable in t and y be a variable in u, such that the weights
of x and y in tu are the same, and there is no variable in tu of greater depth.
Denote by t′ the term obtained from t by replacing x with y, and by u′ the
term obtained from u by replacing y with x. Equations tu ≈ t′u′, obtained in
this way, will be called basic entropic equations.

Lemma 1. The set of basic entropic equations is a base for the equational
theory of entropic groupoids.

By the depth of a term t we mean the maximum of the depths of occurrences
of variables in t, and by the depth of an equation t ≈ u we mean the maximum
of the depths of t and u. The aim of the next three sections is to prove the
following theorem, yielding the decidability of the membership problem for
finite entropic groupoids.

Theorem 2. Let G be a finite groupoid with N elements (N ≥ 2). Then G
is entropic if and only if it satisfies all the basic entropic equations of depth
at most 5N 18.
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2. Proof of Theorem 2: shifting around

Let G be a finite groupoid with N elements (N ≥ 2). Let us fix two symbols
α and β (they can be thought of as symbols for the southwest and the southeast
direction in trees of terms, respectively). For any positive integer n denote by
En the set of finite sequences e = (e1, a1, . . . , en−1, an−1, en), where ei ∈ {α, β}
and ai ∈ G. The elements of En will be called paths (of length n).

For a ∈ G, e = (e1, a1, . . . , en) ∈ En and i ∈ {0, . . . , n−1} define an element
(a ∗ e)i of G as follows: (a ∗ e)0 = a; if ei = α, then (a ∗ e)i = (a ∗ e)i−1ai; if
ei = β, then (a ∗ e)i = ai(a ∗ e)i−1.

For i ∈ {0, . . . , n} put wα
e (i) = |{j : 1 ≤ j ≤ i, ei = α}|, wβ

e (i) = |{j : 1 ≤
j ≤ i, ei = β}| and we(i) = (wα

e (i),w
β
e (i)). The ordered pair we(i) will be

called the e-weight of i (it would be also possible to call it the weight of the
i-th position in the path e, with respect to the paths’s bottom). The e-weight
of n will be called the weight of the path e.

Let (a, b) ∈ G2 be fixed. Also, for most of the time, the positive integer n
will be fixed.

For e ∈ En we define a mapping κe of {0, . . . , n− 1} by κe(i) = ((a∗ e)i, (b∗
e)i).

Two paths e = (e0, a1, . . . , en) and f = (f0, b1, . . . , fn) of the same length
n are said to be similar if en = fn, κe(n − 1) = κf (n − 1) and there is a
permutation π of {0, . . . , n − 1} such that fi = eπ(i) and bi = aπ(i) for all
i = 1, . . . , n− 1.

For 0 ≤ i < j ≤ n put [i, j] = {i, i + 1, . . . , j}. These sets will be called
segments. The number j − i is called the length of [i, j]. (By definition,
the length is always positive.) Two segments [i, j] and [k, l] are said to be
nonoverlapping if either j ≤ k or l ≤ i. By the total length of a set S
of pairwise nonoverlapping segments we mean the sum of the lengths of all
segments in S. A segment [i, j] is called regular if j < n. For a regular
segment [i, j], the two ordered pairs, κe(i) and κe(j), will be called the lower
and the upper e-value of [i, j], respectively; if they are the same, we say that
the segment is e-valued and we call κe(i) the e-value of [i, j]. A segment is
called e-correct if it is e-valued and of length at most N 2 (in particular, it
must be regular). Since the range of κ has at most N 2 elements, it is easy to
see that for a given e, every regular segment of length at least N 2 contains at
least one e-correct subsegment. A regular segment [i, j] is called e-correctly
glued if there is a sequence i = p0 < p1 < · · · < pr = j such that [pk−1, pk] is
e-correct for any k = 1, . . . , r. Of course, every e-correctly glued segment is
e-valued.

By an e-assembly we will mean a set of pairwise disjoint, e-correctly glued
segments with pairwise different e-values. (Clearly, an e-assembly contains at
most N 2 sets.) By a gap in C we mean any regular segment [i, j] such that i
is either 0 or the last element of a segment in C, j is either n− 1 or the first
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element of a segment in C, and there is no segment in C contained in [i, j].
Clearly, there are at most N 2 +1 gaps in C, and the sum of the lengths of all
gaps and of all segments in C gives n− 1 precisely. By a maximal e-assembly
we will mean an e-assembly C such that for any path e′ similar to e, any
e′-assembly has total length less or equal to the total length of C.

Lemma 3. Let e ∈ En and C be a maximal e-assembly. Then the total length
of C is at least n−N 4.

Proof. Suppose, on the contrary, that the total length of C is smaller than n−
N4. This is the same as to say that the sum of the lengths of the gaps in
C is at least N 4. There are at most N 2 + 1 gaps. If each of them were
of length at most N 2 − 1, then the sum of their lengths would be at most
(N 2 + 1)(N 2 − 1) = N 4 − 1, a contradiction. So, there is at least one gap of
length at least N 2. But then, there is an e-correct segment [u, v] contained in
that gap.

Suppose there is no segment in C having the same e-value as [u, v]. Then
C ∪ {[u, v]} is an e-assembly of greater total length compared to that of C, a
contradiction.

So, there is precisely one segment [k, h] ∈ C with the same e-value as [u, v].
We have either v ≤ k or h ≤ u. Let us consider the first case.

Where e = (e1, a1, . . . , en), let

e′ = (e1, a1, . . . , eu, au, ev+1, av+1, . . . , ek, ak, eu+1, au+1, . . . , ev, av,

ek+1, ak+1, . . . ).

Let C ′ be the set obtained from C by replacing [k, h] with [k− (v− u), h] and
any segment [i, j] ∈ C, contained in [v, k], with [i − (v − u), j − (v − u)]. It
is easy to see that e′ is similar to e and C ′ is an e′-assembly with total length
larger than the total length of C, a contradiction.

In the second case, if h ≤ u, the segment [u, v] could be shifted to hang at
the position h and joined to [k, h] in a similar way, yielding a contradiction as
well.

Lemma 4. For every path e ∈ En there exists a path e
′ similar to e such that

there is a set S of pairwise nonoverlapping, e′-correct segments of total length
at least n−N 4.

Proof. It is an immediate consequence of Lemma 3.

3. Proof of Theorem 2 continued: slopes

Throughout this section let a pair (a, b) ∈ G2 and a path e ∈ En be fixed.
We will assume that there exists a set S of pairwise nonoverlapping, e-correct
segments of total length at least n−N 4, and we will keep S fixed.
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Lemma 5. Let m be a positive integer and let (i, j), (k, l) be two pairs of
nonnegative integers such that 0 < i + j ≤ m, 0 < k + l ≤ m and i

i+j
6= k

k+l
.

Then | i
i+j
− k

k+l
| ≥ 1

m2 .

Proof. We have | i
i+j
− k

k+l
| = | c

(i+j)(k+l)
| for an integer c. Since the fraction is

nonzero, we have |c| ≥ 1 and hence | c
(i+j)(k+l)

| ≥ 1
m2 .

For each segment [i, j] put λe[i, j] =
wα
e (j)−wα

e (i)
j−i

. This is a rational number

between 0 and 1; it will be called the e-slope (or just slope, if e is clear from
context) of [i, j]. Since

λe[i, j] =
wα
e (j)− wα

e (i)

wα
e (j)− wα

e (i) + wβ
e (j)− wβ

e (i)
,

it follows from Lemma 5 that if λ1 and λ2 are two different slopes of two
segments of length at most N 2, then |λ1 − λ2| ≥

1
N4 .

Put Λe = λe[0, n] =
wα
e (n)
n

.

A rational number r will be called large (with respect to e) if r ≥ Λe+
1

2N4 ;
it will be called small if r ≤ Λe −

1
2N4 ; and middle if |r − Λe| <

1
2N4 .

Lemma 6. There is at most one middle rational number r with the property
that there is a segment of length at most N 2 with e-slope equal to r.

Proof. It follows from Lemma 5 and the definitions.

If it exists, the unique middle rational number from Lemma 6 will be de-
noted by Λ′

e. If it does not exist, we put Λ′
e=Λe.

The set S is the disjoint union S−1 ∪ S0 ∪ S1, where S−1, S0 and S1 denote
the set of the segments in S with small, middle and large slopes, respectively.

For k ∈ {−1, 0, 1} put dk =
∑

[i,j]∈Sk
(λe[i, j]− Λe)(j − i).

Lemma 7. We have

(1) |d−1 + d0 + d1| ≤ N 4,

(2) −|S−1|N
2 ≤ d−1 ≤ −

|S−1|
2N4 ,

(3) |d0| ≤
|S0|
2N2 ,

(4) |S1|
2N4 ≤ d1 ≤ |S1|N

2.

Proof. For each i = 0, . . . , n put δe(i) = wα
e (i) − iΛe. (This rational number

could be called the distance of the i-th position on the branch e from the line
connecting the top of e with its bottom.) Clearly, δe(0) = δe(n) = 0.

It is easy to check that for any segment [i, j] we have δe(j)−δe(i) = (λe[i, j]−
Λe)(j − i). Denote by S ′ the set of all the segments of length 2 that are not
contained in any segment from S, so that the total length of S∪S ′ is precisely n
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and the total length of S ′ is at most N 4. We have

0 = δe(n)− δe(0) =
∑

[i,j]∈S∪S′

(δe(j)− δe(i)) =
∑

[i,j]∈S∪S′

(λe[i, j]− Λe)(j − i)

= d−1 + d0 + d1 +
∑

[i−1,i]∈S′

(λe[i− 1, i]).

The last sum is in absolute value at most N 4, so |d−1 + d0 + d1| ≤ N 4. We
have proved (1).

In order to prove (2), (3) and (4), observe that 1 ≤ j−i ≤ N 2 and |λe[i, j]−
Λe| <

1
2N4 in the case (3), while 1

2N4 ≤ |λe[i, j]− Λe| ≤ 1 in cases (2) and (4).

Lemma 8. If n > 5N 18, then at least one of the following two cases takes
place: either |S0| ≥ 2N 10 or both |S−1| ≥ N 10 and |S1| ≥ N 10.

Proof Let |S0| < 2N 10. Since the total length of S is at least n − N 4 >
5N18 − N4 and each segment in S is of length at most N 2, we have |S−1| +

|S0| + |S1| = |S| > 5N18−N4

N2 = 5N 16 − N2. Hence |S−1| + |S1| > 5N 16 −
N2 − 2N 10. Then at least one of the two sets, either S−1 or S1, has more

than 5N16−N2−2N10

2
elements. By symmetry, it is sufficient to consider the case

|S−1| >
5N16−N2−2N10

2
. This number is larger than N 10, so it remains to prove

that also S1 has at least N 10 elements. By Lemma 7, |d−1| >
5N16−N2−2N10

4N4 ,

so that d1 ≥ |d−1| − |d0| − N 4 > 5N16−N2−2N10

4N4 − 2N10

2
− N4. We can again

apply Lemma 7 to see that |S1| ≥
d1
N2 >

5N16−N2−2N10

4N6 − N6 − N2. However,
it is easy to check that this number is larger than N 10.

Lemma 9. If n > 5N 18, then there are two disjoint sets P1, P2 of pairwise
nonoverlapping, e-correct segments and two ordered pairs (p1, q1), (p2, q2) of
nonnegative integers such that |P1| ≥ N 6, |P2| ≥ N 6, (wα

e (j)−wα
e (i),w

β
e (j)−

wβ
e (i)) = (p1, q1) for all [i, j] ∈ P1, (w

α
e (j) − wα

e (i),w
β
e (j) − wβ

e (i)) = (p2, q2)
for all [i, j] ∈ P2, and

p1
p1+q1

≤ Λ′
e ≤

p2
p2+q2

.

Proof. It follows easily from Lemma 8, since any set of N 10 segments of
length at most N 2 contains necessarily a subset of N 6 segments [i, j] with
identical pairs (wα

e (j)− wα
e (i),w

β
e (j)− wβ

e (i)). (These are ordered pairs (r, s)
of nonnegative integers with 0 < r + s ≤ N 2, and one can easily see that the
number of such ordered pairs is at most N 4.)

4. Proof of Theorem 2 completed

Lemma 10. The following two conditions are equivalent for a given quadruple
of ordered pairs (ci, di) 6= (0, 0) (i = 1, 2, 3, 4) of nonnegative integers such that
c1

c1+d1
≤ c2

c2+d2
and c3

c3+d3
≤ c4

c4+d4
:
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(1) there exists a quadruple (n1, n2, n3, n4) 6= (0, 0, 0, 0) of nonnegative inte-
gers such that n1c1 +n2c2 = n3c3 +n4c4 and n1d1 +n2d2 = n3d3 +n4d4;

(2) there is a rational number r such that c1
c1+d1

≤ r ≤ c2
c2+d2

and c3
c3+d3

≤
r ≤ c4

c4+d4
.

If (2) is satisfied, then the integers n1, n2, n3, n4 can be always selected to be
less or equal m3, where m is the maximum of the numbers ci and di.

Proof. If (1) is satisfied, we can put

r =
n1c1 + n2c2

n1c1 + n2c2 + n1d1 + n2d2

=
n3c3 + n4c4

n3c3 + n4c4 + n3d3 + n4d4

.

Let (2) be satisfied. If c1d4 = c4d1, we can take either (c4, 0, 0, c1) or (d4, 0, 0,
d1) for (n1, n2, n3, n4); at least one of the two quadruples is different from
(0, 0, 0, 0). Similarly, if c2d3 = c3d2, we can take either (0, c3, c2, 0) or (0, d3,
d2, 0). If c1 = c2 = c3 = c4, we can take (n1, n2, n3, n4) = (d3, d4, d1, d2).
In all other cases we can take n1 = c4(c2d3 − c3d2), n2 = c3(c4d1 − c1d4),
n3 = c2(c4d1 − c1d4), n4 = c1(c2d3 − c3d2); it follows from (2) that these
numbers are nonnegative.

In order to prove Theorem 2, it is obviously sufficient to show that for any
positive integer n, any (a, b) ∈ G2 and any e, f ∈ En with the same weights
and such that en = α and fn = β,

(a ∗ e)n−1(b ∗ f)n−1 = (b ∗ e)n−1(a ∗ f)n−1.

Suppose that this is not true and let n be the least positive integer for which
there exist (a, b) ∈ G2 and e, f ∈ En giving a contradiction. According to the
assumption, n > 5N 18.

By Lemma 4, there exist paths e′ and f ′ similar to e and f respectively,
such that there are a set S of pairwise nonoverlapping, e′-correct segments
and a set T of pairwise nonoverlapping, f ′-correct segments, both S and T of
total length at least n−N 4.

We have en = e′n = α and fn = f ′n = β. Since we(n) = wf (n) = we′(n) =
wf ′(n), we have Λe = Λf = Λe′ = Λf ′ , the four sets of middle rational numbers
are the same for all these four paths, and also Λ′

e = Λ′
f = Λ′

e′ = Λ′
f ′ ; let us

denote this number by Λ.
Now Lemma 9, applied to the path e′, produces two sets P1, P2 of cardinal-

ities at least N 6 and two ordered pairs (p1, q1), (p2, q2); and applied to f ′, it
similarly produces two sets P3, P4 and two ordered pairs (p3, q3), (p4, q4). We
have 0 < pi + qi ≤ N2 (i = 1, 2, 3, 4) and we have both p1

p1+q1
≤ Λ ≤ p2

p2+q2

and p3
p3+q3

≤ Λ ≤ p4
p4+q4

. It follows by Lemma 10 that there is a quadruple

(n1, n2, n3, n4) 6= (0, 0, 0, 0) of nonnegative integers such that n1p1 + n2p2 =
n3p3 + n4p4, n1q1 + n2q2 = n3q3 + n4q4 and ni ≤ N6 (i = 1, 2, 3, 4). Take
n1 segments [ri, si] in P1 (i = 1, . . . , n1) and n2 segments [ri, si] in P2 (i =
n1 +1, . . . , n1 +n2) and denote by e′′ the path obtained from e′ by deleting all



8 J. JEŽEK AND M. MARÓTI

the members with indexes in one of the sets {ri+1, . . . , si} (i = 1, . . . , n1+n2).
This new path is of a length m < n, and its weight is we(n) − (n1p1 +
n2p2, n1q1 + n2q2). We can similarly obtain a path f ′′ from f ′; its weight is
wf (n)− (n3p3 + n4p4, n3q3 + n4q4), and we see that e′′ and f ′′ are of the same
weight. (In particular, f ′′ is of the same length m < n as e′′.) By the minimal-
ity of n, (a∗e′′)m−1(b∗f

′′)m−1 = (b∗e′′)m−1(a∗f
′′)m−1. Since all the segments

that have been ‘squeezed to one point’ during this process were correct (with
respect to the appropriate paths), we have (a∗e)n−1 = (a∗e′)n−1 = (a∗e′′)m−1,
(b ∗ e)n−1 = (b ∗ e′)n−1 = (b ∗ e′′)m−1, (a ∗ f)n−1 = (a ∗ f ′)n−1 = (a ∗ f ′′)m−1 and
(b ∗ f)n−1 = (b ∗ f ′)n−1 = (b ∗ f ′′)m−1. It follows that (a ∗ e)n−1(b ∗ f)n−1 =
(b ∗ e)n−1(a ∗ f)n−1.

This completes the proof of Theorem 2.

5. An equivalent concept of Turing machine

The aim of the rest of this paper is to prove the following theorem.

Theorem 11. There is no algorithm deciding for any finite partial groupoid
whether it satisfies all equations of entropic groupoids.

The basic idea is to encode an arbitrary Turing machine T into a finite
partial groupoidG(T ) in such a way thatG(T ) satisfies all entropic equations
if and only if T does not halt. Since there is no algorithm deciding whether a
Turing machine halts, we will get the desired undecidability. Firstly, we give
an abstract (and slightly modified) definition of the Turing machine, and give a
local characterization of the computation of T . Then we set upG(T ) carefully.
Our ultimate goal is to show that if an entropic equation p ≈ q fails in G(T )
then we can recover a halting computation in the term-trees. Failure of the
equation means that we have some evaluation where both sides are defined but
the values of the sides are not equal. These two facts will guarantee that the
term-trees satisfy the local characterization of being a halting computation of
T . The local checkings are performed by the partial multiplication, yielding
an undefined value whenever some error has been found. The rest of the paper
will carry out this outline.

We need a slight modification of the concept of Turing machine, summarized
as follows. We require that at each even step the machine’s head (after writing
the new value to the cell) either moves to the right or does not move, and at
each odd step it either moves to the left or does not move. Also, the machine
should never enter the initial state again after the start. So we have the
following formal definitions.

Definition 12. A Turing machine T = (S, 0, 1, T ) is a set S of states with
two distinguished elements 0, 1 ∈ S together with a mapping T : S × {0, 1} ×
{0, 1} → (S \ {1}) × {0, 1} × {0, 1}. We call 0 the halting state, and 1 the
initial state.
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The mapping T describes the commands of T in the following way. Given
any state s ∈ S, a digit ε ∈ {0, 1} (the digit in the cell the head is pointing to)
and the parity π ∈ {0, 1} of the step; the triple T (s, ε, π) = (s′, ε′, µ′) contains
the new state s′ ∈ S \ {0}, the new digit ε′ ∈ {0, 1} (replacing ε in the cell
the head was pointing to), and a number µ′ describing the head’s movement
in the following way. For π = 0, the value µ′ = 0 means “stand,” while µ′ = 1
means “move to the right.” For π = 1, µ′ = 0 means “move to the left,” while
µ′ = 1 means “stand.”

Definition 13. A configuration (t, p, s, π) of T is an element of {0, 1}Z×Z×
S ×{0, 1}. We call t : Z→ {0, 1} the tape, p ∈ Z the position, s ∈ S the state
and π ∈ {0, 1} the parity of the configuration. The initial configuration is the
quadruple (0̄, 0, 1, 0) with the constant 0 tape (0̄ stands for the mapping of Z
onto {0}.)

For any configuration the Turing machine T uniquely determines (com-
putes) the next configuration. By iteration, starting from the initial con-
figuration, we obtain a sequence of configurations, which will be called the
computation of T . We will be interested in whether the halting state 0 ∈ S
appears in this sequence.

Definition 14. The processor for T is the mapping of the set of configurations
into itself, denoted by T ∗ and defined as

T ∗ : (t, p, s, π) 7→ (t′, p+ µ′ − π, s′, 1− π),

where (s′, ε′, µ′) = T (s, t(p), π) and

t′(n) =

{

t(n) if n 6= p,

ε′ otherwise.

Definition 15. The computation of T is the mapping T̄ of N into the set of
configurations defined recursively by

T̄ (m) =

{

(0̄, 0, 1, 0) if m = 0,

T ∗(T̄ (m− 1)) if m > 0.

We say that the Turing machine T halts if there exists a natural number m
such that T̄ (m) = (t, p, 0, π) for some t, p and π.

It is not hard to see that our concept of Turing machine is equivalent to
the usually accepted definition. It is well known that there is no algorithm
deciding whether a Turing machine halts. We will use this fact, and for each
Turing machine T we construct a finite partial groupoid G(T ) which satisfies
all entropic equations if and only if T does not halt. More precisely, we will
show that an entropic equation does not hold in G(T ) if and only if we can
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Figure 1. The triangle of computation of a Turing machine

find the halting computation encoded into the equation. To achieve this goal,
we transform the computation into a tree-like shape.

We can write the consecutive configurations below each other, at each step
taking into account only those cells of the tape to which any possible Turing
machine’s head can point. In this way, for T starting on the empty tape, we
obtain a “triangle” as sketched on the left hand side of Figure 1. The circles
connected by solid lines form the life-cycles of the cells. The dashed lines
indicate the possible movements (right at even and left at odd steps). We can
give a better shape to this “triangle” if we shift each odd row to the left a
little bit (as pictured on the right hand side). In this way the life-cycle of a
cell appears as a zig-zag, and the value µ′ = 0 (or 1) means that the head
appears to move to the left (or right).

Definition 16. A box is an element (s, µ, ε, π) of the set B = S × {0, 1} ×
{0, 1} × {0, 1}. A box (s, µ, ε, π) is called tape-box if (s, µ) = (1, 0), otherwise
it is a head-box with state s.

A box (s, µ, ε, π) represents a box at the right hand side of Figure 1. The
parity of the row is stored in π, while ε contains the digit of the corresponding
cell. In most of the cases (s, µ) = (1, 0), which means that the head is not
pointing to this cell (tape-box). If the head is pointing to the cell (head-box),
then s stores the current state of T and µ stores the direction of the previous
step. But for the initial state s = 1 there is no previous step, so we use
(s, µ) = (1, 1) in this case (and that is why we can use the unused value (1, 0)
for tape-boxes).

Definition 17. Let ∆ be N×N with the dual order. Thus (0, 0) is the largest
element in ∆, and (i, j) ≤ (k, l) if and only if i ≥ k and j ≥ l. A triangle for
T is a mapping of a finite upset D ⊂ ∆ (i.e., a finite union of principal filters)
into the set of boxes B.

As an example, a triangle is sketched on the right hand side of Figure 1.
The finite upset D ⊂ ∆ gives the shape of the triangle, while an element
(i, j) ∈ D identifies the unique box in the triangle with i many left turns and
j many right turns.
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Definition 18. The number of initial states in a triangle A : D → B is
the cardinality of the set {(i, j) ∈ D | A(i, j) = (s, µ, ε, π) and (s, µ) = (1, 1)}.
The number of halting states is the cardinality of the set {(i, j) ∈ D | A(i, j) =
(s, µ, ε, π) and s = 0}.

Definition 19. A valid triangle for T is a triangle A : D → B satisfying
the following ten conditions for any (i, j) ∈ D. Put (s, µ, ε, π) = A(i, j) and
(s′, ε′, µ′) = T (s, ε, π). Put (s0, µ0, ε0, π0) = A(i+1, j) whenever (i+1, j) ∈ D,
and (s1, µ1, ε1, π1) = A(i, j + 1) whenever (i, j + 1) ∈ D. The conditions are:

(1) π = (i+ j) mod 2,
(2) if i = 0 or j = 0 then (s, µ) = (1, 0) and ε = 0,
(3) if (s, µ) = (1, 0) then επ = ε,
(4) if (s, µ) 6= (1, 0) then επ = ε′,
(5) if (s, µ) 6= (1, 0) then (sµ′ , µµ′) = (s′, µ′),
(6) if s0 6= 1 and µ0 = 0 then (s, µ) 6= (1, 0) and µ′ = 0,
(7) if s0 6= 1 and µ0 = 1 then (s, µ) = (1, 0),
(8) if s1 6= 1 and µ1 = 1 then (s, µ) 6= (1, 0) and µ′ = 1,
(9) if s1 6= 1 and µ1 = 0 then (s, µ) = (1, 0),

(10) if (s, µ) = (1, 1) then π = 0.

Note that A(i + 1, j) and A(i, j + 1) are not necessarily defined, and any
condition involving undefined variables is considered as fulfilled.

It is easy to see that there are valid triangles. For example, take the almost
constant triangle with D arbitrary and A(i, j) = (1, 0, 0, π) for all (i, j) ∈ D
(the parity π must vary). Beside this trivial example, there are triangles
containing starting pieces of the computation of T . Basically, we can put the
initial state to, or “start” the machine at, any position (k, l) ∈ D which is not
on the side and for which π = 0.

Example 20. For any given finite upset D ⊂ ∆ and any pair of elements
(1, 1) ≥ (k, l) ∈ D such that k + l = 0 mod 2 we define a valid triangle
Ak,l : D → B as

Ak,l(i, j) =



















(1, 0, 0, π) if (i, j) £ (k, l),

(1, 0, t(p), π) if (i, j) ≤ (k, l) and p 6= n,

(1, 1, 0, π) if (i, j) = (k, l) and p = n,

(s, µ, t(p), π) if (i, j) < (k, l) and p = n,

where π = (i + j) mod 2, m = (i − k) + (j − l), n = d((j − l) − (i − k))/2e,
T̄ (m) = (t, p, s,−), T̄ (m−1) = (t′, p′, s′, π′), and T (s′, t′(p′), π′) = (s, t(p′), µ).
Note that these variables are not necessarily defined in all the cases, but they
are defined in those cases when we need them in the definition. (It may be
helpful to compare this definition with the illustration in Figure 2.)
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(i, j)

(i− k, j − l) n

m

(1, 3) 0

(0, 0) 0

(1, 0) (0, 1)

(1, 1)(2, 0) (0, 2)

(1, 2) (0, 3)(3, 0)

(3, 1)(4, 0) (2, 2) (0, 4)

(2, 3) 1

(1, 0) 0

(1, 4) 1

(0, 1) 1

(0, 5)(3, 2)(4, 1)

(3, 3) 2

−1(2, 0)

(4, 2)

(3, 4) 3

(2, 1) 0

(4, 3) 3

−1(3, 0)

(2, 4) 2

(1, 1) 0

(2, 5) 3

(1, 2) 1

(1, 5) 2

(0, 2) 1

(0, 0)

(2, 1)

Figure 2. Various indices of boxes in a triangle when (k, l) = (1, 3).

It is not very hard to see that the (local character) conditions (1) − (9)
of Definition 19 guarantee that every valid triangle is one of these, with the
exception that it may contain no initial state or more than one:

Lemma 21. A triangle A : D → B with exactly one initial state is valid if
and only if it is one of the valid triangles defined in Example 20.

Proof. This is not difficult to verify, and we just indicate the proof. It may
help to understand the intuitive idea if we translate each item of Definition 19
into human language:

(1) the parity π is correct everywhere;
(2) the head never points to the side of the triangle, and the sides contain

only the digit 0;
(3) if this is a tape-box, then the next box along the life-cycle (zig-zag) of

this cell contains the same digit (it cannot be overwritten);
(4) if this is a head-box, then the next box along the life-cycle (zig-zag) of

this cell contains the digit what the Turing machine produces;
(5) if this is a head-box, then the Turing machine uniquely determines the

next state and the direction of the movement, moreover the head moves
either to the left or to the right according to the direction;
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(6) if the south-west neighbor of a box is a head-box containing a non-initial
state and a direction which indicates that the head came from this box,
then this box must be a head-box, as well;

(7) if the south-west neighbor of a box is a head-box containing a non-initial
state and a direction which indicates that the head did not come from
this box, then this box must be a tape-box;

(8) the same as point (6) but for the other direction;
(9) the same as point (7) but for the other direction;

(10) every head-box with the initial state must be in an even row.

Items (2), (6) and (8) guarantee that every head-box is connected up to
the unique head-box containing the initial state. Items (6), (7), (8) and (9)
guarantee that the head-boxes form a descending chain. Now, by (1), (3), (4)
and (5), the triangle must contain the computation of T starting from the
unique head-box with the initial state. Finally, T moves to the left or stays
(stays or moves to the right) in odd steps (in even steps) according to (10).

6. The partial groupoid G(T )

Now we are ready to define the partial groupoid G(T ) for any given Turing
machine T . First of all, we will describe the elements of the groupoid, then
define the partial multiplication. We need the following variables for indexing:

s ∈ S the state in the box
µ ∈ {0, 1} the direction of the last step
ε ∈ {0, 1} the digit in the box
π ∈ {0, 1} the parity of the row
ι ∈ {−1, 0, 1} a flag indicating the presence of the initial state
χ ∈ {−1, 0, 1} a flag indicating the presence of the halting state
δ ∈ {−1, 0, 1} the direction of the “checking”

Each element in G(T ) belongs to one of the following classes denoted by
letters: i, t, l1, l2, l3, l4, l5, l6, r1, r2, r3, r4, r5, r6, a, b, c, d, e, f, g. In each class the
elements are indexed by values of the variables (s, µ, ε, π, ι, χ, δ) defined above.
Many classes do not use all of these variables for indexing. For example, class
t has only one index δ, and we denote the two elements of this class by t(−1)
and t(1). Note that, as you can see in the following list, δ cannot be 0 in this
class. In class i there is only one element (which will be irreducible), so it has
no index at all. As another example, class l1 contains 16 elements. Here are
the elements:

i
t(δ) δ ∈ {−1, 1}
ln(π, ι, χ, δ) ι, χ, δ ∈ {0, 1}, n = 1, 2, 3, 4, 5
l6(π)
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rn(π, ι, χ, δ) ι, χ, δ ∈ {−1, 0}, n = 1, 2, 3, 4, 5
r6(π)
a(s, µ, ε, π, ι, χ, δ) ι, χ, δ ∈ {−1, 0, 1}
b(s, µ, ε, π, ι, χ, δ) ι, χ, δ ∈ {−1, 0}
c(s, µ, ε, π, ι, χ, δ) ι, χ, δ ∈ {0, 1}
d(s, µ, ε, π, ι, χ, δ) ι, χ, δ ∈ {−1, 0}
e(s, µ, ε, π, ι, χ, δ) ι, χ, δ ∈ {0, 1}
f(s, µ, ε, π)
g(s, µ, ε, π)

Now we are ready to define the partial multiplication of G(T ). We will list
only the defined products, and sort them accordingly to the class of the result-
ing element. In this way we can easily see to which products can the elements
be reduced. We encourage the reader to locate the list of defined products in
Figure 3. Since our variables for indexing have overlapping ranges, and many
classes have various indexes, it may be helpful to indicate the variable beside
the value. So the expression a:b stands for the value a and means that a is to
be considered as a value of the indexing variable b.

The element i is irreducible. The open circles in Figure 3 are meant to be
labeled by this element. Both elements of class t have a unique decomposition:

t(−1:δ) = l1(0:π, 0:ι, 0:χ, 0:δ) · r1(0:π,−1:ι,−1:χ,−1:δ),

t(1:δ) = l1(0:π, 1:ι, 1:χ, 1:δ) · r1(0:π, 0:ι, 0:χ, 0:δ).

Every element in classes l1, l2, l4 and r1, r2, r4 has a unique decomposition,
where we preserve the indexes:

ln(π, ι, χ, δ) = ln+1(π, ι, χ, δ) · i for n = 1, 2,

l4(π, ι, χ, δ) = i · l5(π, ι, χ, δ),

rn(π, ι, χ, δ) = i · rn+1(π, ι, χ, δ) for n = 1, 2,

r4(π, ι, χ, δ) = r5(π, ι, χ, δ) · i.

Elements in class l3 (and r3) can have one or more decompositions. The
decompositions are always products of elements from l1 and l4 (r4 and r1),
where the elements from l1 (r1) will always have the other parity. Here we
combine the information from the factors. The product will be not defined if
ι0 = ι1 6= 0.

l3(π, ι0 + ι1,max(χ0, χ1), δ) = l1(1− π, ι0, χ0, 0:δ or δ) · l4(π, ι1, χ1, δ)

r3(π, ι0 + ι1,min(χ0, χ1), δ) = r4(π, ι0, χ0, δ) · r1(1− π, ι1, χ1, 0:δ or δ)

In class l5 (and r5) we have two types of decompositions. If δ = 0 (no direc-
tion), then l5(π, ι, χ, 0:δ) is reducible if and only if ι = 0 and χ = 0 (no initial



MEMBERSHIP PROBLEMS FOR FINITE ENTROPIC GROUPOIDS 15

������������������������
������������������������
������������������������

���������������
������
���

	�	�	�		�	�	�	
�
�

�
�


�������
�����������������

���������������
������
���

������������������������������������������������

���������������
������
���
������������������������
������������������������������������������������

�������������������������������������� � �  � � 
!�!�!�!!�!�!�!"�"�""�"�"

#�##�#$
$

%�%�%�%%�%�%�%&�&�&&�&�&'�'�'
'�'�''�'�'
(�((�(
(�(

)�)�)�))�)�)�)*�*�**�*�*+�+�+�++�+�+�+,�,�,,�,�,
-�-�-�--�-�-�-.�.�..�.�./�/�//�/�//�/�/

0�00�0
0�0

1�1�11�1�11�1�1
2�22�2
2�2
3�3�3�33�3�3�34�4�44�4�4

5�55�56
6

7�7�7�77�7�7�78�8�88�8�8 9�9�9�99�9�9�9
:�:�::�:�:;�;;�;<

<
=�=�==�=�==�=�=
>�>>�>
>�>
?�?�?�??�?�?�?@�@�@@�@�@
A�A�A�AA�A�A�AB�B�BB�B�BC�C�C�CC�C�C�CD�D�DD�D�D

E�E�E�EE�E�E�EF�F�FF�F�FG�G�G�GG�G�G�GH�H�HH�H�H
I�I�I�II�I�I�IJ�J�JJ�J�J

K�KK�KL
L

M�M�M�MM�M�M�MN�N�NN�N�NO�O�O
O�O�OO�O�O
P�PP�P
P�P

Q�Q�Q�QQ�Q�Q�QR�R�RR�R�R
S�S�S�SS�S�S�ST�T�TT�T�T
U�U�U�UU�U�U�UV�V�VV�V�V

W�WW�W
W�W
X�XX�X
X�X

Y�Y�Y�YY�Y�Y�YZ�Z�ZZ�Z�Z

[�[[�[\
\]�]�]�]]�]�]�]^�^�^^�^�^

_�_�__�_�__�_�_
`�``�`
`�`

a�a�a�aa�a�a�ab�b�bb�b�bc�c�c�cc�c�c�cd�d�dd�d�d

e�e�e�ee�e�e�ef�f�ff�f�fg�g�g�gg�g�g�gh�h�hh�h�h
i�i�i�ii�i�i�ij�j�jj�j�j k�kk�k

k�k

l�ll�l
l�l

m�m�mm�m�mm�m�m
n�nn�n
n�n
o�o�o�oo�o�o�op�p�pp�p�p

q�qq�qr
r

s�s�s�ss�s�s�st�t�tt�t�t u�u�u�uu�u�u�u
v�v�vv�v�vw�ww�wx

x y�y�y�yy�y�y�y
z�z�zz�z�z{�{�{�{{�{�{�{|�|�||�|�|

}�}�}�}}�}�}�}~�~�~~�~�~���������������
������
���

���������������
������
���
������������������������

�������
�

������������������������ ��������������
���������� ���

�

������������������������������������������������
���������������������������������������

������
���

���������������
������
���
������������������������

�������
�

������������������������ ��������������
���������������� 

 ¡�¡�¡�¡¡�¡�¡�¡¢�¢�¢¢�¢�¢£�£�£�££�£�£�£¤�¤�¤¤�¤�¤
¥�¥�¥¥�¥�¥¦�¦�¦¦�¦�¦ §�§§�§

§�§

¨�¨¨�¨
¨�¨

©�©�©©�©�©©�©�©
ª�ªª�ª
ª�ª
«�«�«�««�«�«�«¬�¬�¬¬�¬�¬

��®
®

¯�¯�¯¯�¯�¯°�°�°°�°�° ±�±�±�±±�±�±�±
²�²�²²�²�²³�³³�³´

´

µ�µ�µ�µµ�µ�µ�µ¶�¶�¶¶�¶�¶·�·�·�··�·�·�·¸�¸�¸¸�¸�¸
¹�¹�¹�¹¹�¹�¹�¹º�º�ºº�º�º »�»»�»

»�»

¼�¼¼�¼
¼�¼

½�½�½½�½�½½�½�½
¾�¾¾�¾
¾�¾
¿�¿�¿�¿¿�¿�¿�¿À�À�ÀÀ�À�À

Á�ÁÁ�ÁÂ
Â

Ã�Ã�Ã�ÃÃ�Ã�Ã�ÃÄ�Ä�ÄÄ�Ä�Ä Å�Å�Å�ÅÅ�Å�Å�Å
Æ�Æ�ÆÆ�Æ�ÆÇ�ÇÇ�ÇÈ

È

É�É�É�ÉÉ�É�É�ÉÊ�Ê�ÊÊ�Ê�ÊË�Ë�Ë�ËË�Ë�Ë�ËÌ�Ì�ÌÌ�Ì�Ì
Í�Í�Í�ÍÍ�Í�Í�ÍÎ�Î�ÎÎ�Î�ÎÏ�Ï�ÏÏ�Ï�ÏÏ�Ï�Ï

Ð�ÐÐ�Ð
Ð�Ð

Ñ�ÑÑ�Ñ
Ñ�Ñ
Ò�ÒÒ�Ò
Ò�Ò
Ó�Ó�Ó�ÓÓ�Ó�Ó�ÓÔ�Ô�ÔÔ�Ô�Ô

Õ�ÕÕ�ÕÖ
Ö

×�×�×�××�×�×�×Ø�Ø�ØØ�Ø�Ø Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù
Ú�Ú�ÚÚ�Ú�Ú ÛÛÜ

Ü

Ý�Ý�ÝÝ�Ý�ÝÞ�Þ�ÞÞ�Þ�Þ
ß�ß�ßß�ß�ßà�à�àà�à�à
á�á�áá�á�áâ�â�ââ�â�â

ã�ãã�ã
ã�ã
ä�ää�ä
ä�ä

å�å�åå�å�åæ�æ�ææ�æ�æ

ç�çç�çè
èé�é�é�éé�é�é�éê�ê�êê�ê�ê

ë�ëë�ë
ë�ë
ì�ìì�ì
ì�ì

í�í�íí�í�íî�î�îî�î�îï�ï�ïï�ï�ïð�ð�ðð�ð�ð

ñ�ñ�ñ�ññ�ñ�ñ�ñò�ò�òò�ò�òó�ó�ó�óó�ó�ó�óô�ô�ôô�ô�ô

õ�õ�õ�õõ�õ�õ�õö�ö�öö�ö�ö÷�÷�÷�÷÷�÷�÷�÷ø�ø�øø�ø�ø
ù�ù�ù�ùù�ù�ù�ùú�ú�úú�ú�úû�û�ûû�û�ûû�û�û

ü�üü�ü
ü�ü

ý�ý�ýý�ý�ýý�ý�ý
þ�þþ�þ
þ�þ
ÿ�ÿ�ÿ�ÿÿ�ÿ�ÿ�ÿ����������

�������
�

������������������������
��������������������������������������	�	�		�	�	


�
�

�
�

�
�

������
���
������������������
�������������������������������

�

������
���
������
���

������
���
������
���
������������������������
������������������������������������������������

l5

l4

l3

l2

l1

l6

r1

r3

r4

r5

r6

r2

c

e

f

b

d

a

g

r1

r3

r4

r5

r6

r2

l5

l4

l3

l2

l1

l6

c

e

f

b

d

a

g

c

e

f

b

d

a

g
c

e

f

b

d

a

g

c

e

f

b

d

a

g
c

e

f

b

d

a

g

c

e

f

b

d

a

g

l5

l4

l3

l2

l1

l6

t

c

e

f

b

d

a

c

e

b

a

g

l1

r1

r3

r2

Figure 3. Decompositions of elements

or halting state):

l5(π, 0:ι, 0:χ, 0:δ) = l6(π) · i,

r5(π, 0:ι, 0:χ, 0:δ) = i · r6(π).

If δ 6= 0, then the element is always reducible to a product of elements from l6
and a in two different ways. Note that, according to our assumptions, we must
have the digit 0 and the no-state along the sides of the triangle of computation.

l5(π, ι, χ, 1:δ) = l6(π) · a(1:s, 0:µ, 0:ε, 1− π, ι, χ, 0:δ or 1:δ),

r5(π, ι, χ,−1:δ) = a(1:s, 0:µ, 0:ε, 1− π, ι, χ, 0:δ or − 1:δ) · r6(π).
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Note that there are more possible values of ι and χ for class a than for classes
l5 and r5. Thus the products above are not defined if the value of ι or χ is not
in the proper range.
The elements of l6 and r6 are irreducible. So up to this point we have defined
all products that yield elements on the “sides” (classes t, l1, . . . , l6, r1, . . . , r6).

Now we are ready to define the decomposition of elements in classes a, . . . , g.
For class a the following products are defined:

a(s, µ, ε, π, ι, χ, δ) = b(s, µ, ε, π,min(ι, 0),min(χ, 0),min(δ, 0)) ·

c(s, µ, ε, π,max(ι, 0),max(χ, 0),max(δ, 0)).

Every element in classes b and c has a unique decomposition:

b(s, µ, ε, π, ι, χ, δ) = d(s, µ, ε, π, ι, χ, δ) · i,

c(s, µ, ε, π, ι, χ, δ) = i · e(s, µ, ε, π, ι, χ, δ).

In class d (and e) we have two types of decompositions. If δ = 0 (no direction)
then d(s, µ, ε, π, ι, χ, δ) (e((s, µ, ε, π, ι, χ, δ)) is reducible if and only if ι = 0 and
χ = 0:

d(s, µ, ε, π, 0:ι, 0:χ, 0:δ) = i · f(s, µ, ε, π),

e(s, µ, ε, π, 0:ι, 0:χ, 0:δ) = g(s, µ, ε, π) · i.

If δ 6= 0 then the product

d(s, µ, ε, π, ι+ ι′,min(χ, χ′),−1:δ) =

a(s0, µ0, ε0, 1− π, ι, χ, 0:δ or − 1:δ) · f(s, µ, ε, π)

is defined whenever

ι′ =

{

−1 if (s0, µ0) = (1, 1),

0 otherwise;
χ′ =

{

−1 if s0 = 0,

0 otherwise;

and the following conditions hold:

(1) −1 ≤ ι, χ ≤ 0,
(2) ι 6= −1 or ι′ 6= −1,
(3) if ι′ = −1 then π = 1,
(4) the conditions (3)− (10) in Definition 19 where T (s, ε, π) = (s′, ε′, µ′).

The decomposition of e(s, µ, ε, π, ι, χ, 1) is defined analogously:

e(s, µ, ε, π, ι+ ι′,max(χ, χ′), 1:δ) =

g(s, µ, ε, π) · a(s1, µ1, ε1, 1− π, ι, χ, 0:δ or 1:δ)

whenever

ι′ =

{

1 if (s1, µ1) = (1, 1),

0 otherwise;
χ′ =

{

1 if s1 = 0,

0 otherwise;

and the following conditions hold:
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(1) 0 ≤ ι, χ ≤ 1,
(2) ι 6= 1 or ι′ 6= 1,
(3) if ι′ = 1 then π = 1,
(4) the conditions (3)− (10) in Definition 19 where T (s, ε, π) = (s′, ε′, µ′).

And finally, every element in classes f and g is irreducible. Up to this point
we have listed all defined products, and finished the definition of the partial
groupoid G(T ).

7. Facts

In this section we give a series of facts, each of which can be proved easily
from the definition of G(T ). Then we prove our main theorem.

Fact 22. In each defined product the classes of the factors uniquely determine
the class of the product. Moreover, the values of the factors’ indexing variables
determine the values of the product’s indexes. Thus the partial multiplication
of G(T ) is well defined.

Fact 23. The class of any defined product uniquely determines the classes of
the two factors, except for classes l5, r5, d and e. If the product lies in one of
these classes, then either both factors are irreducible or one is irreducible and
the other is in class a.

Definition 24. A decomposition tree of an element r ∈ G(T ) is a finite binary
tree labeled by elements of G(T ) such that the root is labeled r and each non-
leaf node is labeled by the product of its children’s labels.

Definition 25. Let R be any decomposition tree. Remove all nodes labeled
by i, t(−1) or t(1) together with the connecting edges. Also, remove all edges
between nodes l3–l1, r3–r1, l5–a, r5–a, d–a and e–a (but not the nodes). An l-
block (r-block) is a component of the rest of the graph labeled only by elements
from classes l1, . . . , l6 (r1, . . . , r6). Every other block is an a-block labeled by
elements from classes a, . . . , g. An l or r-block is full if it has 6 nodes. For an
a-block to be full we require 7 nodes.

Fact 26. In each block the nodes have the same parity (the π-index of the
labeling elements). In each a-block the nodes have the same s, µ and ε-indexes.

Fact 27. The parities of any two adjacent blocks (connected by a single edge
in the tree) are different.

Fact 28. Let r be an element of G(T ) which has a χ-index χ, and R be a
decomposition tree of r. If χ = 0 then every element in R has χ-index 0, and
no element has s-index 0. If χ 6= 0 then no element has χ-index −χ, and
there is either a node labeled by a(0:s,−,−,−,−,−,−) or a leaf with χ-index
χ.
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Figure 4. Decompositions of elements with δ-index 0

Fact 29. Let r be an element of G(T ) which has a ι-index ι, and R be a
decomposition tree of r. If ι = 0 then every element in R has ι-index 0, and
no element has (s, µ)-index (1, 1). If ι 6= 0 then no element has ι-index −ι,
and there is either exactly one node labeled by a(1:s, 1:µ,−,−,−,−,−) or there
is exactly one leaf with ι-index ι.

Fact 30. In each l or r-block the nodes have the same δ-indexes. In an a-block
if top node (class a) has δ-index 0, then all nodes in the block have δ-index 0.
If the top node has δ-index 1, then the nodes in classes c and e have δ-index 1,
and in classes b and d index 0 (f and g have no δ-index). Moreover, the node
in class e decomposes into a product of a g-node and an a-node. A similar
statement is true for δ-index −1.

Fact 31. Let r be an element of G(T ) which has a δ-index δ, and R be a
decomposition tree of r. Then every element in R has δ-index 0 or δ.

Fact 32. Let R be a decomposition tree for an element r ∈ G(T ). If R
contains an edge between nodes l5–a or e–a, then r has δ-index 1. If R contains
an edge between nodes r5–a or d–a, then r has δ-index −1.

Fact 33. Let r ∈ G(T ) be an element which has δ-index 0, and R be a decom-
position tree for r. Then R is a subtree of one of the three trees in Figure 4.

Fact 34. Let r ∈ G(T ) be an element which has δ-index 1, and R be a decom-
position tree for r. Then R is a subtree of the tree in Figure 5. Furthermore,
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Figure 5. Decompositions of elements with δ-index 1

the nodes with δ-index 1 form a subtree of R (top part), and the other pieces
contain only nodes with δ-index 0. A similar statement is true for δ-index
−1.

Fact 35. Let R be any decomposition tree. Let us change pairs of nodes in R
which have the same weight, in such a way that all products are defined in the
obtained decomposition tree R′. Then R′ has the same shape as R, and every
non-leaf node in R′ is in the same class as in R, and has the same s, µ, ε and
π indexes.

Now we restate our main theorem as
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Theorem 36. T halts if and only if G(T ) satisfies all entropic equation.

Proof. Suppose that an entropic equation p ≈ q in n variables fails in G(T ).
Thus there exists an evaluation ū ∈ G(T )n such that both p(ū) and q(ū) are
defined but p(ū) 6= q(ū). Put r = p(ū), r′ = q(ū), and let R, R′ be the
decomposition trees of r and r′ corresponding to p and q, respectively.

Claim 1. The elements r and r′ are exactly the two elements of the class t.

If r has δ-index 0, then by Fact 33 R is a subtree of one of the trees in
Figure 4. But in all of these trees there are no two different nodes with the
same weight (number of left-right turns), except for adjacent leaves (variables)
both evaluated with the same irreducible element i. Clearly, interchanging
these variables does not yield a different final result, which contradicts to
p(ū) 6= q(ū). Thus r cannot have δ-index 0.

Now suppose that r has δ-index 1 and is not in class t. By Fact 34 R must
be a subtree of the tree in Figure 5. This implies that if R contains an r-block,
then the whole tree must consist only of r-blocks. But the same argument as
for δ-index 0 shows that this cannot happen. Similarly, we see that R must
contain at least one a-block. Let us take the right-most a-node in R, and
denote it by o. This node must be connected to the left with either an l5–a or
e–a edge. For o there is no other node with the same weight. Thus o cannot
be interchanged with another node in R′. But in R′ the node o must also be
an a-node by Fact 35, so it must be connected to the left with either an l5–a
or e–a edge, as well. Then by Fact 32 every a-node in both R and R′ must be
connected to the left. This shows that we cannot interchange different nodes
with the same weight, except for the adjacent leaves which are evaluated with
the same i anyway. This contradicts again with r 6= r′.

A similar argument works for δ-index −1. This proves that both r and r′

must be in class t.

Claim 2. Every element in ū has zero δ, χ and ι-indices.

Suppose the contrary. Then by Facts 28, 29 and 31 the same non-zero index
must appear in the decompositions of both r and r′. These two elements are
the elements of class t, and they decompose into elements with indexes 1 and
−1. But a non-zero index cannot be 1 and −1 at the same time.

Suppose that r = t(1:δ) and r′ = t(−1:δ). Now the following claim is a
corollary of Facts 30, 31, 32 and Claim 2:

Claim 3. Every a-node in R is connected to the left with either an l5–a or
e–a edge. Every a-node in R′ is connected to the right with either an r5–a or
d–a edge. Thus the a-blocks form a finite upset of ∆.

Now we can see how to transform the decomposition tree R into a valid
triangle A : D → B. The a-blocks form an upset of ∆, and we assign the s,
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µ, ε and π-indexes of an a-box, which are constant in the block by Fact 26, to
the corresponding box. By Fact 35 we know that this assignment is the same
for both sides. By Fact 29 the ι-index 1 in

t(1:δ) = l1(0:π, 1:ι, 1:χ, 1:δ) · r1(0:π, 0:ι, 0:χ, 0:δ).

shows that there is exactly one initial state in the triangle. The χ-index 1 of
r1 shows that there is at least one halting state in the triangle. The l-classes
on the left hand side of R guarantee that every a-class on the left-hand side
is a tape-box containing the empty digit. The r-classes of R′ do the same job
on the other side. Since every a-block is connected to the north-west (in R)
and to the north-east neighbor (in R′) all the local checkings are carried out
in the decomposition of elements in classes d and e. All these together prove
that the defined triangle is valid and contains exactly one initial state. Now
by Lemma 21 we have a halting computation of T .

The converse statement, that is, if T halts then we have some entropic
equation p ≈ q which fails inG(T ), is quite obvious. We just have to construct
a large enough tree like the one in Figure 5 for p. We put different variables
to each leaves of the tree. We get q if we interchange each occurrence of a
with the unique i which has the same weight. Now the evaluation we want to
check is the one obtained from Example 20 with ι, χ and δ-index 0.

With the same construction and a slightly more subtle argument one can
prove the following theorem, as well:

Theorem 37. There is no algorithm deciding for any finite partial groupoid
whether it can be embedded into an entropic groupoid.
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[1] J. Ježek, A decidable equational theory with undecidable membership problem for finite

algebras. (To appear in Algebra Universalis.)
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